Lesson Plan

Name of the Faculty	: -	Ms. Vineet
Discipline	: -	ECE
Semester	: -	Fourth
Subject	: -	Communication Systems
Lesson Plan Duration	: - 15	Weeks (From February 2024 to June 2024)

Workload (Lecture / Practical) per week (in hours):- Lectures-03, Practicals-02

Week	Theory		Practical	
	Lecture	Topic(topic including	Practical	Торіс
	day	assignment/test)	day	-
1st	1 st	AM/FM Transmitters	1st	To observe the
		-Classification of		waveforms at
		transmitters on the basis of		different stages of a
		modulation, service,		AM low power
		frequency and power		transmitter
		-Block diagram of AM		
		transmitters and working of		
		each stage		
		-Block diagram and		
		working principles of		
		reactance FET and		
		Armstrong FM transmitters		
	2 nd	AM/FM Transmitters		
		-Classification of		
		transmitters on the basis of		
		modulation, service,		
		frequency and power		
		-Block diagram of AM		
		transmitters and working of		
		each stage		
		-Block diagram and		
		working principles of		
		reactance FET and		
		Armstrong FM transmitters		

	3 rd	AM/FM Transmitters		
		-Classification of		
		transmitters on the basis of		
		modulation, service,		
		frequency and power		
		-Block diagram of AM		
		transmitters and working of		
		each stage		
		-Block diagram and		
		working principles of		
		reactance FET and		
		Armstrong FM transmitters		
2nd	4 th	AM/FM Transmitters	2nd	To observe the
		-Classification of		waveforms at
		transmitters on the basis of		different stages of a
		modulation, service,		Radio Receiver
		frequency and power		
		-Block diagram of AM		
		transmitters and working of		
		each stage		
		-Block diagram and		
		working principles of		
		reactance FET and		
		Armstrong FM transmitters		
	5 th	AM/FM Transmitters		
		-Classification of		
		transmitters on the basis of		
		modulation, service,		
		frequency and power		
		-Block diagram of AM		
		transmitters and working of		
		each stage		
		-Block diagram and		
		working principles of		
		reactance FET and		
		Armstrong FM transmitters		
	6th	AMI/FM Kadio Receivers		
		-Principle and working with		
		DIOCK diagram of super		
		neterodyne AM receiver,		
		Function of each block and		
		typical waveform at input		
		and output of each block		

		-Performance characteristics of a radio receiver: sensitivity, selectivity, fidelity, S/N ratio, image rejection ratio and their measurement procedure. Concepts of simple and delayed AGC Block diagram of an FM receiver, function of each block and waveforms at		
3rd	7th	blocks. AM/FM Radio Receivers -Principle and working with block diagram of super heterodyne AM receiver, Function of each block and typical waveform at input and output of each block -Performance characteristics of a radio receiver: sensitivity, selectivity, fidelity, S/N ratio, image rejection ratio and their measurement procedure. - Concepts of simple and delayed AGC -Block diagram of an FM receiver, function of each block and waveforms at input and output of different blocks.	3rd	To align AM broadcast radio receiver
	8th	AM/FM Radio Receivers -Principle and working with block diagram of super heterodyne AM receiver, Function of each block and typical waveform at input and output of each block -Performance characteristics of a radio		

		receiver: sensitivity, selectivity, fidelity, S/N ratio, image rejection ratio and their measurement procedure. - Concepts of simple and delayed AGC -Block diagram of an FM receiver, function of each block and waveforms at input and output of different blocks.		
	9th	AM/FM Radio Receivers -Principle and working with block diagram of super heterodyne AM receiver, Function of each block and typical waveform at input and output of each block -Performance characteristics of a radio receiver: sensitivity, selectivity, fidelity, S/N ratio, image rejection ratio and their measurement procedure. - Concepts of simple and delayed AGC -Block diagram of an FM receiver, function of each block and waveforms at input and output of different blocks.		
4th	10th	AM/FM Radio Receivers -Principle and working with block diagram of super heterodyne AM receiver, Function of each block and typical waveform at input and output of each block -Performance characteristics of a radio receiver: sensitivity,	4th	To align the dish antenna

	selectivity, fidelity, S/N	
	ratio, image rejection ratio	
	and their measurement	
	procedure.	
	-Concepts of simple and	
	delayed AGC	
	-Block diagram of an FM	
	receiver function of each	
	block and waveforms at	
	input and output of different	
	hlocks	
11+b	AM/EM Dadio Deceivero	
11111	Alvi/FIVI Radiio Receivers	
	-Principle and working with	
	block diagram of super	
	neterodyne AM receiver,	
	Function of each block and	
	typical waveform at input	
	and output of each block	
	-Performance	
	characteristics of a radio	
	receiver: sensitivity,	
	selectivity, fidelity, S/N	
	ratio, image rejection ratio	
	and their measurement	
	procedure.	
	-Concepts of simple and	
	delayed AGC	
	-Block diagram of an FM	
	receiver, function of each	
	block and waveforms at	
	input and output of different	
	blocks.	
12th	AM/FM Radio Receivers	
	-Principle and working with	
	block diagram of super	
	heterodyne AM receiver,	
	Function of each block and	
	typical waveform at input	
	and output of each block	
	-Performance	
	characteristics of a radio	
	receiver: sensitivity,	
	selectivity, fidelity, S/N	

		 ratio, image rejection ratio and their measurement procedure. Concepts of simple and delayed AGC Block diagram of an FM receiver, function of each block and waveforms at input and output of different blocks. 		
5th	13th	AM/FM Radio Receivers -Principle and working with block diagram of super heterodyne AM receiver, Function of each block and typical waveform at input and output of each block -Performance characteristics of a radio receiver: sensitivity, selectivity, fidelity, S/N ratio, image rejection ratio and their measurement procedure. - Concepts of simple and delayed AGC -Block diagram of an FM receiver, function of each block and waveforms at input and output of different blocks.	5th	To identify and study the various types of antennas used in different frequency ranges.
	14th	AM/FM Radio Receivers -Principle and working with block diagram of super heterodyne AM receiver, Function of each block and typical waveform at input and output of each block -Performance characteristics of a radio receiver: sensitivity, selectivity, fidelity, S/N ratio, image rejection ratio		

		and their measurement procedure. - Concepts of simple and delayed AGC -Block diagram of an FM receiver, function of each block and waveforms at input and output of different blocks.		
	15th	AM/FM Radio Receivers -Principle and working with block diagram of super heterodyne AM receiver, Function of each block and typical waveform at input and output of each block -Performance characteristics of a radio receiver: sensitivity, selectivity, fidelity, S/N ratio, image rejection ratio and their measurement procedure. - Concepts of simple and delayed AGC -Block diagram of an FM receiver, function of each block and waveforms at input and output of different blocks.		
6th	16th	AM/FM Radio Receivers -Principle and working with block diagram of super heterodyne AM receiver, Function of each block and typical waveform at input and output of each block -Performance characteristics of a radio receiver: sensitivity, selectivity, fidelity, S/N ratio, image rejection ratio and their measurement	6th	To plot the radiation pattern of directional and omnidirectional antenna.

		procedure. - Concepts of simple and delayed AGC -Block diagram of an FM receiver, function of each block and waveforms at input and output of different blocks. -Assignment		
	17th	Test		
	18th	Antennas:		
	1001	 -Electromagnetic spectrum and its various ranges: VLF, LF, MF,HF, VHF, UHF, Microwave -Physical concept of radiation of electromagnetic energy from a dipole. Concept of polarization of EM Waves. -Definition and physical concepts of the terms used with antenna like point source, gain directivity, aperture, effective area, radiation pattern, beam width and radiation resistance, loss resistance. -Types of antennas –brief description, characteristics and typical applications of half wave dipole, folded dipole, patch , loop, Ferrite rod, Yagi antenna, Dish 		
7th	19th	Antennas:	7th	To plot the
		-Electromagnetic spectrum and its various ranges: VLF, LF, MF,HF, VHF, UHF, Microwave -Physical concept of radiation of electromagnetic energy from a dipole.		variation of field strength of a radiated wave, with distance from transmitting antenna

	Concept of polarization of	
	FM Waxes	
	Definition and physical	
	-Definition and physical	
	concepts of the terms used	
	with antenna like point	
	source, gain directivity,	
	aperture, effective area,	
	radiation pattern, beam	
	width and radiation	
	resistance, loss resistance.	
	-Types of antennas –brief	
	description, characteristics	
	and typical applications of	
	half wave dipole, folded	
	dipole, patch , loop, Ferrite	
	rod, Yagi antenna, Dish	
	antenna	
20th	Antennas:	
	-Electromagnetic spectrum	
	and its various ranges: VLF,	
	LF, MF, HF, VHF, UHF,	
	Microwave	
	-Physical concept of	
	radiation of electromagnetic	
	energy from a dipole.	
	Concept of polarization of	
	EM Waves.	
	-Definition and physical	
	concepts of the terms used	
	with antenna like point	
	source gain directivity	
	aperture effective area	
	radiation pattern beam	
	width and radiation	
	resistance loss resistance	
	Types of antonnas brief	
	description characteristics	
	and typical applications of	
	half wayo dipolo foldod	
	dipolo patch loop Torrite	
	uipole, palcii , loop, Ferfite	
	rou, y agi antenna, Disn	
D1 :	antenna	
21st	Antennas:	

		-Electromagnetic spectrum and its various ranges: VLF, LF, MF,HF, VHF, UHF, Microwave -Physical concept of radiation of electromagnetic energy from a dipole. Concept of polarization of EM Waves. -Definition and physical concepts of the terms used with antenna like point source, gain directivity, aperture, effective area, radiation pattern, beam width and radiation resistance, loss resistance. -Types of antennas –brief description, characteristics and typical applications of half wave dipole, folded dipole, patch , loop, Ferrite rod, Yagi antenna, Dish		
8th	22nd	antennaAntennas:-Electromagnetic spectrumand its various ranges: VLF,LF, MF,HF, VHF, UHF,Microwave-Physical concept ofradiation of electromagneticenergy from a dipole.Concept of polarization ofEM WavesDefinition and physicalconcepts of the terms usedwith antenna like pointsource, gain directivity,aperture, effective area,radiation pattern, beamwidth and radiationresistance, loss resistanceTypes of antennas -brief	8th	To study and rectify different faults in broadcast radio receiver

	description, characteristics	
	and typical applications of	
	half wave dipole, folded	
	dipole, patch , loop, Ferrite	
	rod, Yagi antenna, Dish	
	antenna	
23rd	Antennas:	
	-Electromagnetic spectrum	
	and its various ranges: VLF,	
	LF, MF, HF, VHF, UHF,	
	Microwave	
	-Physical concept of	
	radiation of electromagnetic	
	energy from a dipole.	
	Concept of polarization of	
	EM Waves	
	-Definition and physical	
	concepts of the terms used	
	with antenna like point	
	source gain directivity	
	aperture effective area	
	radiation pattern beam	
	width and radiation	
	resistance loss resistance	
	Types of antonnas brief	
	description characteristics	
	and typical applications of	
	half ways dipole folded	
	dipolo patch loop Forrito	
	rod Vagi antonna Dish	
	antonna	
J∕Ith		
24(11	Flootromagnotic spostrum	
	and its various ranges: VI E	
	Microwayo	
	Dhysical concept of	
	-Physical concept of	
	anargy from a dipolo	
	Concept of polarization of	
	EM Maxoc	
	Definition and physical	
	concepts of the terms used	

		with antenna like point source, gain directivity, aperture, effective area, radiation pattern, beam width and radiation resistance, loss resistance. -Types of antennas –brief description, characteristics and typical applications of half wave dipole, folded dipole, patch , loop, Ferrite rod, Yagi antenna, Dish antenna		
9th	25th	Propagation -Basic idea about different modes of wave propagation and typical areas of application. Ground wave propagation and its characteristics. -Space wave communication-line of sight propagation, standard atmosphere, structure of standard atmosphere	9 th	Revision
	26th	Propagation -Basic idea about different modes of wave propagation and typical areas of application. Ground wave propagation and its characteristics. -Space wave communication-line of sight propagation, standard atmosphere, structure of standard atmosphere		
	27th	Propagation -Basic idea about different modes of wave propagation and typical areas of application. Ground wave propagation and its		

		characteristics.		
		-Space wave		
		communication-line of sight		
		propagation standard		
		atmosphere structure of		
		standard atmosphere		
10th	20th	Dropagation	10th	Dovicion
1001	2011	Piopagation Dasia idaa abaut different	1001	REVISION
		-Basic lidea about uniferent		
		modes of wave propagation		
		and typical areas of		
		application. Ground wave		
		propagation and its		
		characteristics.		
		-Space wave		
		communication-line of sight		
		propagation, standard		
		atmosphere, structure of		
		standard atmosphere		
	29th	Propagation		
		-Basic idea about different		
		modes of wave propagation		
		and typical areas of		
		application. Ground wave		
		propagation and its		
		characteristics.		
		-Space wave		
		communication-line of sight		
		propagation, standard		
		atmosphere, structure of		
		standard atmosphere		
	30th	Propagation		
		-Basic idea about different		
		modes of wave propagation		
		and typical areas of		
		application. Ground wave		
		propagation and its		
		characteristics.		
		-Space wave		
		communication-line of sight		
		propagation, standard		
		atmosphere, structure of		
		standard atmosphere		
11th	31st	Propagation	11th	Revision

		-Basic idea about different		
		modes of wave propagation		
		and typical areas of		
		application. Ground wave		
		propagation and its		
		characteristics.		
		-Assignment		
	32nd	Test		
	33rd	Propagation		
	5510	-Space wave		
		communication-line of sight		
		propagation standard		
		atmosphere structure of		
		standard atmosphere		
		Sky wayo propagation		
		ionosphoro and its lavors		
		Explanation of torms virtual		
		hoight critical frequency		
		maximum usable frequency,		
		multiple hop propagation		
1.0+b	2.4th	Dropagation	10th	Devision
1201	5401	Sly wave propagation	1201	Revision
		- Sky wave propagation-		
		Europeanties of terms wirtual		
		Explanation of terms-virtual		
		neight, critical frequency,		
		maximum usable frequency,		
		multiple nop propagation		
	35th	Propagation		
		- Sky wave propagation-		
		Ionosphere and its layers.		
		Explanation of terms-virtual		
		height, critical frequency,		
		maximum usable frequency,		
		multiple nop propagation		
	36th	Propagation		
		- Sky wave propagation-		
		ionosphere and its layers.		
		Explanation of terms-virtual		
		height, critical frequency,		
		maximum usable frequency,		
		multiple hop propagation		
13th	37th	Propagation	13th	Revision
		- Sky wave propagation-		

		ionosphere and its layers.		
		Explanation of terms-virtual		
		height, critical frequency,		
		maximum usable frequency,		
		multiple hop propagation		
	38th	Satellite Communication:		
		-Basic idea, passive and		
		active satellites, Meaning of		
		terms : orbit, apogee,		
		perigee		
		-Geostationary satellite and		
		its need. Block diagram and		
		explanation of satellite		
		communication link		
		-Introduction to VSAT and		
		its features		
	39th	Satellite Communication:		
		-Basic idea, passive and		
		active satellites, Meaning of		
		terms : orbit, apogee,		
		perigee		
		-Geostationary satellite and		
		its need. Block diagram and		
		explanation of satellite		
		communication link		
		-Introduction to VSAT and		
1.4.1	40.1	its features	4.4.1	. · ·
14th	40th	Satellite Communication:	14th	Revision
		-Basic idea, passive and		
		active satellites, Meaning of		
		terms : orbit, apogee,		
		perigee		
		-Geostationary satellite and		
		avalanation of catallite		
		communication link		
		Introduction to VSAT and		
		its features		
	41st	Satellite Communication:		
		-Basic idea, passive and		
		active satellites, Meaning of		
		terms : orbit, apogee,		
		perigee		

		-Geostationary satellite and		
		its need Block diagram and		
		explanation of satellite		
		communication link		
		Introduction to VSAT and		
		its footures		
	40md	Lis reduies		
	42110			
		-Basic idea, passive and		
		active satellites, Meaning of		
		terms : orbit, apogee,		
		perigee		
		-Geostationary satellite and		
		its need. Block diagram and		
		explanation of satellite		
		communication link		
		-Introduction to VSAT and		
		its features		
15th	43rd	Satellite Communication:	15th	Revision
		-Basic idea, passive and		
		active satellites, Meaning of		
		terms : orbit, apogee,		
		perigee		
		-Geostationary satellite and		
		its need. Block diagram and		
		explanation of satellite		
		communication link		
		-Introduction to VSAT and		
		its features		
	44th	Satellite Communication:		
		-Basic idea, passive and		
		active satellites. Meaning of		
		terms : orbit, apogee.		
		perigee		
		-Geostationary satellite and		
		its need. Block diagram and		
		explanation of satellite		
		communication link		
		-Introduction to VSAT and		
		its features		
		-Assignment		
		terms : orbit, apogee, perigee -Geostationary satellite and its need. Block diagram and explanation of satellite communication link -Introduction to VSAT and its features -Assignment		

Lesson Plan (Project)

Name of the Faculty: Discipline: Semester: Subject: Lesson Plan Duration: Satpal Singh/Sh. Yeshpal Electronics and Communication Engg. 4th Project (From Feb, 2024 to June, 2024)

		Theory		Practical		
Week	Lecture Day	Topic(including assignment/Test)	Practical Day	Торіс		
1 _{st}	NA	NA	1	Discussion & Concept of Major Project Work		
	NA	NA	2	Making the group of students.		
	NA	NA	3	Analyzing the importance of testing & basic engineering principles.		
2nd	NA	NA	4	Analyzing the aptitudes and Interest of students and submission of synopsis of project.		
	NA	NA	5	Analyzing the usefulness and scope of the project		
	NA	NA	6	Discussion on Possibilities, Pros and Cons of the different projects		
3 _{rd}	NA	NA	7	Discussions on nature and scope of the selected project assignment		
	NA	NA	8	Assessing the boundaries of the project assignment		
			9	Planning of the Project- selecting the tools and software and hardware to be used; and Finalizing of Projects.		
4 _{th}	NA	NA	10	Working on projects/Designing and making of PCBs; layout etc		
	NA	NA	11	Working on projects/Designing		

			and making of PCBs; layout etc
NA	NA	12	Working on projects/Designing and making of PCBs; layout etc

5 _{th}	NA	NA	13	Working on projects/Designing and making of PCBs; layout etc
	NA	NA	14	Working on projects/Designing and making of PCBs; layout etc
	NA	NA	15	Working on projects/Designing and making of PCBs; layout etc
6 _{th}	NA	NA	16	Component Mounting/ assembling and testing.
	NA	NA	17	Component Mounting/ assembling and testing.
	NA	NA	18	Component Mounting/ assembling and testing.
7 _{th}	NA	NA	19	Component Mounting/ assembling and testing.
	NA	NA	20	Component Mounting/ assembling and testing.
	NA	NA	21	Component Mounting/ assembling and testing.
8th	NA	NA	22	Component Mounting/ assembling and testing.
	NA	NA	23	Component Mounting/ assembling and testing.
	NA	NA	24	Component Mounting/ assembling and testing.
9 _{th}	NA	NA	25	Checking the chances for improvements.
	NA	NA	26	Checking the chances for improvements.
	NA	NA	27	Checking the chances for improvements.
10th	NA	NA	28	Checking the chances for improvements.
	NA	NA	29	Complete execution & presentation by the students
	NA	NA	30	Complete execution & presentation by the students
11th	NA	NA	31	Complete execution & presentation by the students

	NA	NA	32	Complete execution & presentation by the students
--	----	----	----	---

	NA	NA	33	Complete execution & presentation by the students
12th	NA	NA	34	Complete execution/ application of projects.
	NA	NA	35	Complete execution/ application of projects
	NA	NA	36	Complete execution/ application of projects
13th	NA	NA	37	Project Report Writing: Deciding the format and Report layout designing.
	NA	NA	38	Writing the report as per the decided scheme
	NA	NA	39	Writing the report as per the decided scheme
14th	NA	NA	40	Submission & Evaluation of the final project work including its report and viva
	NA	NA	41	Submission & Evaluation of the final project work including its report and viva
	NA	NA	42	Submission & Evaluation of the final project work including its report and viva
15th	NA	NA	43	Final evaluation after rework, if needed
	NA	NA	44	Final evaluation after rework, if needed
	NA	NA	45	Final evaluation after rework, if needed

BPS Mahila Polytchnic, Khanpur Kalan

	Lesson Plan					
Name o	f the Facu	ilty :	Ms. Shefal	i		
Disciplir	ne	:	ELECTRONICS AND COMMUNICATION			
Semeste	er	:	4th			
Subject		:	MICROPRO	CESSOR & MICRO-CONTROLLERS		
Lesson I	Plan Dura	tion :	15 Weeks	(From Feb to June 2024)		
Work Lo	bad per w	eek :	THEORY - 3	, 3 , PRACTICAL - 4		
Week	•	Theory	Practical			
	Lecture		Practical			
	Day	Торіс	Day	Торіс		
		Introduction to Microprocessors and				
	1st	Microcontrollers	1st			
	2nd	Basic Introduction	2nd	Understand 8051 development		
1st		comparison of Microcomputor		board		
	2 rd	Misroprosoccor Misrocontrollor	2 rd			
	310		310			
			4th			
			-			
	4th	Selection of Microcontroller	5th			
		introduction to 80E1 History				
2nd	C+b	Architocturo	C+b	Generating Hex File using Keil		
	Sth		011	Compiler		
	6th	Pin Diagram.	7th			
			8th			
	7th	Crystal Circuit, Reseat Circuit.	9th			
	8th	Programming Languages and Instructi	10th	Programming and interfacing of		
3rd	001		10(11	RFLAY and Buzzer		
	9th	Different Types of Programming langu	11th			
			12th			
	10+h	Advantages of Programming in C	12+h			
	10(1)		1501			
	11th	Addressing Modes	14th	Programming to interface switches		
4th				and LEDs		
	12th	Instruction Set of 8051	15th			
			1.01			
			16th			
	13th	SESSIONAL	17th			
	10111		1, (1)			
5+b	14th	SESSIONAL	18th			
501	4.5.1		101			
	15th	SESSIONAL	19th			
			20th			
6th				Programming and interfacing of LCD		
	16th	Types of Instructions	21st			

	17th	Data types and time delay in 8051	22nd	
	18th	I/O programming in 8051 C,	23rd	
			24th	
	19th	Hex file generation using Keil Compile	25th	
7th	20th	Timers and Registers of 8051	26th	Programming for A/D converter,
	21st	Timer / Counter logic and modes	27th	result on LCD
			28th	
	22nd	Programming of 8051 timers	29th	
8th	23rd	Programming Timer 1 using C	30th	Programming for D/A converter,
	24th	Serial Port of 8051	31st	result on LCD
			32nd	
	25th	Basics of serial communication,	33rd	
9th	26th	Serial Communication-SCON,SBUF	34th	Programming for D/A converter,
	27th	Modes of serial communication	35th	result on LCD
			36th	
	28th	SESSIONAL	37th	
10th	29th	SESSIONAL	38th	
	30th	SESSIONAL	39th	
			40th	
	31st	8051 connection to RS232	41st	
11th	32nd	Interrupts	42nd	Interfacing Stepper Motor with
	33rd	Real World Interfacing with 8051	43rd	8051.
			44th	
	34th	I/O Interfacing –	45th	
12th	35th	LCD	46th	Interfacing Stepper Motor with
_	36th	LED	47th	8051.
			48th	
	37th		49th	
12th	38th	Keyboard interfacing ADC and DAC	50th	Interfacing different sensors with

1301				8051.
	39th	Sensor Interfacing and Signal Condition	51st	
			52nd	
14th	40th	SESSIONAL	53rd	
	41st	SESSIONAL	54th	
	42nd	SESSIONAL	55th	
			56th	
	43rd	REVISION	57th	
15th	44th	REVISION	58th	
	45th	REVISION	59th	
			60th	

Lesson Plan

Name of the Faculty	: -	Ms. Vineet
Discipline	: -	ECE
Semester	: -	Fourth
Subject	: -	Power Electronics

Lesson Plan Duration: - 15 Weeks (From February 2024 to June 2024)

Workload (Lecture / Practical) per week (in hours):- Lectures-03, Practicals-04

Week	Theory		Practical	
	Lecture	Topic(topic including	Practical	Торіс
	day	assignment/test)	day	-
1st	day 1 st	assignment/test) Power Electronics Devices -Role of Power Electronics -Construction ,working principles of SCR, two transistor analogy of SCR, V-I characteristics of SCR -SCR specifications and ratings di/dt and dv/dt protection of SCR -Different methods of SCR triggering -Different commutation circuits for SCR -Construction and working principle of DIAC,TRIAC and their V-I characteristics -Construction, working principle of UJT, V-I	day 1st	To plot VI characteristics of an SCR
		characteristics of UJT, UJT		

		V-I characteristics of SCR		
		-SCR specifications and		
		ratings		
		di/dt and dv/dt protection		
		of SCP		
		Different methods of SCD		
		-Different methods of SCR		
		triggering		
		-Different commutation		
		circuits for SCR		
		-Construction and working		
		principle of DIAC,TRIAC		
		and their V-I characteristics		
		-Construction, working		
		principle of UJT, V-I		
		characteristics of UJT, UJT		
		as relaxation oscillator		
		-Basic idea about the		
		selection of Heat sink for		
		thyristors		
		-Application such as light		
		intensity control, speed		
		control of universal motors,		
		fan regulator, battery		
		charger		
2nd	4 th	Power Electronics Devices	2nd	To plot VI
		-Role of Power Electronics		characteristics Of
		-Construction .working		TRIAC
		principles of SCR, two		
		transistor analogy of SCR.		
		V-I characteristics of SCR		
		-SCR specifications and		
		ratings		
		di/dt and dv/dt protection		
		of SCR		
		Different methods of SCP		
		triggering		
		-Different commutation		
		circuits for SCP		
		-Construction and working		
		principle of DIAC TDIAC		
		and their V L characteristics		
		Construction working		
		-Construction, working		
		principle of UJT, V-I		

	characteristics of LUT LUT	
	as relayation oscillator	
	-Basic idea about the	
	selection of Heat sink for	
	thyristors	
	-Application such as light	
	intensity control, speed	
	control of universal motors.	
	fan regulator, battery	
	charger	
۲ th	Power Electronics Devices	
5	Polo of Dower Electronics	
	-Role of Power Electronics	
	-Construction ,working	
	principles of SCR, two	
	transistor analogy of SCR,	
	V-I characteristics of SCR	
	-SCR specifications and	
	ratings	
	di/dt and dv/dt protection	
	of SCR	
	-Different methods of SCR	
	triggering	
	Different commutation	
	circuite for SCD	
	Circuits for SCR	
	-Construction and working	
	principle of DIAC, TRIAC	
	and their V-I characteristics	
	-Construction, working	
	principle of UJT, V-I	
	characteristics of UJT, UJT	
	as relaxation oscillator	
	-Basic idea about the	
	selection of Heat sink for	
	thyristors	
	-Application such as light	
	intensity control speed	
	control of universal motors	
	for regulatory better	
	ian regulator, Dattery	
	charger	
6th	Power Electronics Devices	
	-Role of Power Electronics	
	-Construction ,working	
	principles of SCR, two	

		transistor analogy of SCR,		
		V-I characteristics of SCR		
		-SCR specifications and		
		ratings		
		di/dt and dv/dt protection		
		of SCR		
		-Different methods of SCR		
		triggering		
		-Different commutation		
		circuits for SCR		
		-Construction and working		
		principle of DIAC,TRIAC		
		and their V-I characteristics		
		-Construction, working		
		principle of UJT, V-I		
		characteristics of UJT, UJT		
		as relaxation oscillator		
		-Basic idea about the		
		selection of Heat sink for		
		thyristors		
		-Application such as light		
		intensity control, speed		
		control of universal motors,		
		fan regulator, battery		
	- 1	charger	2.1	
3rd	7th	Power Electronics Devices	Brd	To plot VI
		-Role of Power Electronics		characteristics of
		-Construction ,working		UJT.
		principles of SCR, two		
		transistor analogy of SCR,		
		V-I characteristics of SCR		
		-SCR specifications and		
		ratings		
		di/dt and dv/dt protection		
		Of SCR		
		-Different methods of SCR		
		Different commutation		
		circuits for SCP		
		circuits for SCR		
		circuits for SCR -Construction and working principle of DIAC TRIAC		
		circuits for SCR -Construction and working principle of DIAC,TRIAC and their V-I characteristics		

	principle of UIT V-I	
	characteristics of LUT LUT	
	characteristics of 051, 051	
	-Basic idea about the	
	selection of Heat sink for	
	thyristors	
	-Application such as light	
	intensity control, speed	
	control of universal motors,	
	fan regulator, battery	
	charger	
8th	Power Electronics Devices	
	-Role of Power Electronics	
	-Construction ,working	
	principles of SCR, two	
	transistor analogy of SCR,	
	V-I characteristics of SCR	
	-SCR specifications and	
	ratings	
	di/dt and dv/dt protection	
	of SCR	
	-Different methods of SCR	
	triggering	
	-Different commutation	
	circuits for SCR	
	-Construction and working	
	principle of DIAC TRIAC	
	and their V-I characteristics	
	Construction working	
	principle of LUT V I	
	philiciple of OJ1, v-1	
	characteristics of UJ1, UJ1	
	-Basic idea about the	
	selection of Heat sink for	
	thyristors	
	-Application such as light	
	intensity control, speed	
	control of universal motors,	
	tan regulator, battery	
	charger	
9th	Power Electronics Devices	
	-Role of Power Electronics	
	-Construction ,working	

		principles of SCR, two transistor analogy of SCR, V-I characteristics of SCR -SCR specifications and ratings di/dt and dv/dt protection of SCR -Different methods of SCR triggering -Different commutation circuits for SCR -Construction and working principle of DIAC,TRIAC and their V-I characteristics -Construction, working principle of UJT, V-I characteristics of UJT, UJT as relaxation oscillator -Basic idea about the selection of Heat sink for thyristors -Application such as light intensity control, speed control of universal motors, fan regulator, battery		
4th	10th	Controlled Rectifiers -Single phase half wave controlled rectifier with load(R,R-L) -Single phase half controlled full wave bridge rectifier with load(R,R-L) -Single phase fully controlled full wave bridge rectifier. -Singe phase full wave centre tap controlled rectifier.	4th	To plot VI characteristics of DIAC
	11th	Controlled Rectifiers -Single phase half wave controlled rectifier with load(R,R-L)		

		 Single phase half controlled full wave bridge rectifier with load(R,R-L) Single phase fully controlled full wave bridge rectifier. Singe phase full wave centre tap controlled rectifier. 		
	12th	Controlled Rectifiers -Single phase half wave controlled rectifier with load(R,R-L) -Single phase half controlled full wave bridge rectifier with load(R,R-L) -Single phase fully controlled full wave bridge rectifier. -Singe phase full wave centre tap controlled rectifier.		
5th	13th	Controlled Rectifiers -Single phase half wave controlled rectifier with load(R,R-L) -Single phase half controlled full wave bridge rectifier with load(R,R-L) -Single phase fully controlled full wave bridge rectifier. -Singe phase full wave centre tap controlled rectifier.	5th	To study UJT relaxation oscillator and observe different wave forms.
	14th	Controlled Rectifiers -Single phase half wave controlled rectifier with load(R,R-L) -Single phase half controlled full wave bridge rectifier with load(R,R-L) -Single phase fully		

		controlled full wave bridge		
		rectifier.		
		-Singe phase full wave		
		centre tan controlled		
		rectifier		
	15th	Controlled Rectifiers		
	1000	-Single phase half wave		
		controlled rectifier with		
		load(P P I)		
		Single phase half		
		controlled full wave bridge		
		controlled full wave blidge		
		Single phase falls		
		-Single phase fully		
		controlled full wave bridge		
		rectifier.		
		-Singe phase full wave		
		centre tap controlled		
		rectifier.		
6th	16th	Controlled Rectifiers	6th	To observe wave
		-Single phase half wave		shapes at relevant
		controlled rectifier with		points in a circuit
		load(R,R-L)		of single–phase
		-Single phase half		half wave
		controlled full wave bridge		controlled rectifier
		rectifier with load(R,R-L)		and effect of
		-Single phase fully		change of firing
		controlled full wave bridge		angle.
		rectifier.		
		-Singe phase full wave		
		centre tap controlled		
		rectifier.		
		-Assignment		
	17th	Test		
	18th	Inverters, Choppers, Dual		
		Converters and Cyclo		
		converters		
		-Principle of operation of		
		basic inverter circuits,		
		series and parallel inverters		
		and their applications.		
		-Choppers: Introduction,		
		concepts of duty cycle,		
		types of choppers (Class A.		

		Class B, Class C and Class D). Step up and step down choppers. -Dual Converters and cyclo converters: Introduction, types and basic working principle of dual converters, cyclo converters and their applications.		
7th	19th	Inverters, Choppers, Dual Converters and Cyclo converters -Principle of operation of basic inverter circuits, series and parallel inverters and their applications. -Choppers: Introduction, concepts of duty cycle, types of choppers (Class A, Class B, Class C and Class D). Step up and step down choppers. -Dual Converters and cyclo converters: Introduction, types and basic working principle of dual converters, cyclo converters and their applications.	7th	To observe wave shapes and measurement of voltage at relevant points in TRIAC based AC control circuit.
	20th	Inverters, Choppers, Dual Converters and Cyclo converters -Principle of operation of basic inverter circuits, series and parallel inverters and their applications. -Choppers: Introduction, concepts of duty cycle, types of choppers (Class A, Class B, Class C and Class D). Step up and step down choppers. -Dual Converters and cyclo converters: Introduction,		

		types and basic working		
		principle of dual convertors		
		cyclo convertors and their		
		applications		
	21-+	applications.		
	2151	Inverters, Choppers, Duai		
		Converters and Cyclo		
		converters		
		-Principle of operation of		
		basic inverter circuits,		
		series and parallel inverters		
		and their applications.		
		-Choppers: Introduction,		
		concepts of duty cycle,		
		types of choppers (Class A,		
		Class B, Class C and Class		
		D). Step up and step down		
		choppers.		
		-Dual Converters and cyclo		
		converters: Introduction,		
		types and basic working		
		principle of dual converters,		
		cyclo converters and their		
		applications.		
8th	22nd	Inverters, Choppers, Dual	8th	To observe output
		Converters and Cyclo		wave shape in a
		converters		circuit for single
		-Principle of operation of		phase full wave
		basic inverter circuits,		controlled rectifier.
		series and parallel inverters		
		and their applications.		
		-Choppers: Introduction,		
		concepts of duty cycle,		
		types of choppers (Class A,		
		Class B, Class C and Class		
		D). Step up and step down		
		choppers.		
		-Dual Converters and cyclo		
		converters: Introduction,		
		types and basic working		
		principle of dual converters,		
		cyclo convortors and their		
1		Cyclo converters and then		
		applications.		

		Converters and Cyclo converters -Principle of operation of		
		basic inverter circuits,		
		series and parallel inverters		
		Choppers: Introduction		
		concepts of duty cycle		
		types of choppers (Class A.		
		Class B, Class C and Class		
		D). Step up and step down		
		choppers.		
		-Dual Converters and cyclo		
		converters: Introduction,		
		types and basic working		
		principle of dual converters,		
		cyclo converters and their		
	J4th	applications.		
	2401	Converters and Cyclo		
		converters		
		-Principle of operation of		
		basic inverter circuits,		
		series and parallel inverters		
		and their applications.		
		-Choppers: Introduction,		
		concepts of duty cycle,		
		types of choppers (Class A,		
		Class B, Class C and Class		
		D). Step up and step down		
		Dual Convertors and cyclo		
		converters. Introduction		
		types and basic working		
		principle of dual converters.		
		cyclo converters and their		
		applications.		
9th	25th	Inverters, Choppers, Dual	9 th	To study
		Converters and Cyclo		installation of UPS
		converters		system and routine
		-Principle of operation of		maintenance of
		Dasic inverter circuits,		Datteries.
		series and parallel inverters		

	and their applications. -Choppers: Introduction, concepts of duty cycle, types of choppers (Class A, Class B, Class C and Class	
	D). Step up and step down choppers.	
	-Dual Converters and cyclo	
	converters: Introduction,	
	principle of dual converters	
	cyclo converters and their	
	applications.	
26th	Inverters, Choppers, Dual	
	Converters and Cyclo	
	-Principle of operation of	
	basic inverter circuits.	
	series and parallel inverters	
	and their applications.	
	-Choppers: Introduction,	
	concepts of duty cycle,	
	types of choppers (Class A,	
	D) Step up and step down	
	choppers.	
	-Dual Converters and cyclo	
	converters: Introduction,	
	types and basic working	
	principle of dual converters,	
	cyclo converters and their	
27th	Thyristorised Control of	
	Electric drives	
	a) DC drive control	
	-Half wave drives	
	-Full wave drives	
	-Chopper drives(Speed	
	using choppers)	
	b) AC drive control	
	-Phase control	
	-Constant V/F operation	

		- Cyclo		
		converters/Inverter		
		drive		
10th	28th	Thyristorised Control of	10th	Visit to any Solar
1001	2000	Flectric drives	Totti	Power Plant
		b) DC drive control		i ower i lunt.
		Uplf ways drives		
		-fiall wave ulives		
		-Full wave unives		
		-Chopper drives(Speed		
		control of DC motor		
		using choppers)		
		b) AC drive control		
		-Phase control		
		-Constant V/F operation		
		- Cyclo		
		converters/Inverter		
		drive		
	29th	Thyristorised Control of		
		Electric drives		
		c) DC drive control		
		-Half wave drives		
		-Full wave drives		
		-Chopper drives(Speed		
		control of DC motor		
		using choppers)		
		b) AC drive control		
		-Phase control		
		-Constant V/F operation		
		- Cyclo		
		converters/Inverter		
		drive		
	30th	Thyristorised Control of		
		Electric drives		
		d) DC drive control		
		-Half wave drives		
		-Full wave drives		
		-Chopper drives(Speed		
		control of DC motor		
		using choppers)		
		b) AC drive control		
		-Phase control		
		-Constant V/F operation		
		- Cyclo		

		converters/Inverter		
		drive		
11th	31st	Thyristorised Control of	11th	Revision
		Electric drives		
		e) DC drive control		
		-Half wave drives		
		-Full wave drives		
		-Chopper drives(Speed		
		control of DC motor		
		using choppers)		
		b) AC drive control		
		-Phase control		
		-Constant V/F operation		
		- Cyclo		
		converters/Inverter		
		drive		
	32nd	Thyristorised Control of		
		Electric drives		
		f) DC drive control		
		-Half wave drives		
		-Full wave drives		
		-Chopper drives(Speed		
		control of DC motor		
		using choppers)		
		b) AC drive control		
		-Phase control		
		-Constant V/F operation		
		- Cyclo		
		converters/Inverter		
		drive		
		-Assignment		
	33rd	Thyristorised Control of		
		Electric drives		
		g) DC drive control		
		-Half wave drives		
		-Full wave drives		
		-Chopper drives(Speed		
		control of DC motor		
		using choppers)		
		b) AC drive control		
		-Phase control		
		-Constant V/F operation		
		- Cyclo		

		converters/Inverter drive		
	241		10.1	
12th	34th	Thyristorised Control of Electric drives h) DC drive control -Half wave drives -Full wave drives -Chopper drives(Speed control of DC motor using choppers) b) AC drive control -Phase control -Constant V/F operation - Cyclo converters/Inverter drive	12th	Revision
		-Assignment		
	35th	Test		
	36th	 Uninterruptible Power Supplies UPS, on-line, off line and its specifications Concept of high voltage DC transmission Classification of batteries Introduction to solar power plants and their components 		
13th	37th	 Uninterruptible Power Supplies UPS, on-line, off line and its specifications Concept of high voltage DC transmission Classification of batteries Introduction to solar power plants and their components 	13th	Revision

	38th	Uninterruptible Power		
		Supplies		
		- UPS, on-line, off line		
		and its specifications		
		- Concept of high		
		voltage DC		
		transmission		
		- Classification of		
		batteries		
		- Introduction to solar		
		power plants and		
		their components		
	39th	Uninterruptible Power		
	bbtii	Supplies		
		- UPS on-line off line		
		and its specifications		
		- Concept of high		
		voltage DC		
		transmission		
		- Classification of		
		batteries		
		- Introduction to solar		
		power plants and		
		their components		
14th	40th	Uninterruptible Power	14th	Revision
_		Supplies	-	
		- UPS, on-line, off line		
		and its specifications		
		- Concept of high		
		voltage DC		
		transmission		
		- Classification of		
		batteries		
		- Introduction to solar		
		power plants and		
		their components		
	41st	Uninterruptible Power		
		Supplies		
		- UPS, on-line, off line		
		and its specifications		
		- Concept of high		
		voltage DC		
		transmission		

		- Classification of		
		batteries		
		- Introduction to solar		
		power plants and		
		their components		
	42nd	Uninterruptible Power		
		Supplies		
		- UPS, on-line, off line		
		and its specifications		
		- Concept of high		
		voltage DC		
		transmission		
		- Classification of		
		batteries		
		- Introduction to solar		
		power plants and		
		their components		
15th	43rd	Uninterruptible Power	15th	Revision
		Supplies		
		- UPS, on-line, off line		
		and its specifications		
		- Concept of high		
		voltage DC		
		transmission		
		- Classification of		
		batteries		
		- Introduction to solar		
		power plants and		
	4.4.1	their components		
	44th	Uninterruptible Power		
		Supplies		
		- UPS, On-line, off line		
		Concept of high		
		- Concept of high		
		transmission		
		- Classification of		
		hatteries		
		- Introduction to solar		
		power plants and		
		their components		
		- Assignment		
	45th	Test		